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Abstract: Climate, soil type, and management practices have been reported as primary limiting factors
of gross primary production (GPP). However, the extent to which these factors predict GPP response
varies according to scales and land cover classes. Nitrogen (N) deposition has been highlighted as
an important driver of primary production in N-limited ecosystems that also have an impact on
biodiversity in alpine grasslands. However, the effect of N deposition on GPP response in alpine
grasslands hasn’t been studied much at a large scale. These remote areas are characterized by complex
topography and extensive management practices with high species richness. Remotely sensed GPP
products, weather datasets, and available N deposition maps bring along the opportunity of analyzing
how those factors predict GPP in alpine grasslands and compare these results with those obtained
in other land cover classes with intensive and mixed management practices. This study aims at (i)
analyzing the impact of N deposition and climatic variables (precipitation, sunshine, and temperature)
on carbon (C) fixation response in alpine grasslands and (ii) comparing the results obtained in alpine
grasslands with those from other land cover classes with different management practices. We stratified
the analysis using three land cover classes: Grasslands, croplands, and croplands/natural vegetation
mosaic and built multiple linear regression models. In addition, we analyzed the soil characteristics,
such as aptitude for croplands, stone content, and water and nutrient storage capacity for each class
to interpret the results. In alpine grasslands, explanatory variables explained up to 80% of the GPP
response. However, the explanatory performance of the covariates decreased to maximums of 47%
in croplands and 19% in croplands/natural vegetation mosaic. Further information will improve
our understanding of how N deposition affects GPP response in ecosystems with high and mixed
intensity of use management practices, and high species richness. Nevertheless, this study helps
to characterize large patterns of GPP response in regions affected by local climatic conditions and
different land management patterns. Finally, we highlight the importance of including N deposition
in C budget models, while accounting for N dynamics.

Keywords: gross primary production; land cover; precipitation; temperature; sunshine; nitrogen
deposition; carbon fixation; models; multiple linear regressions
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1. Introduction

Organic carbon (C), which is fixed through photosynthesis, provides agricultural soils with the
quality required to obtain high yields [1]. The most substantial fluxes of C fixed per unit of ground
and time (gross primary production (GPP)) [2] occur in the tropics, subtropics, and humid temperate
regions, e.g., Eastern North America and Western and Central Europe [3]. In particular, Western Europe
has one of the highest cultivated net primary productions in the world (>1 Kg C/m2) [4]. Climatic
variables have been widely used to monitor C fixation [5–7]. In particular, temperature analyses have
traditionally dominated C budget studies [8]. Current approaches include other factors, such as CO2

fertilization, O3, Nitrogen (N) deposition, and land cover change [9–12]. However, controlling factors,
scale, and the ecosystem’s complexity vary among studies and, consequently, the extent to which
limiting factors influence C fixation response.

In croplands and grasslands, climate, soil type, and land management have been highlighted
as important controlling factors of C response [13–15]. At a global scale, precipitation has been
reported as the climatic component with the highest impact on the primary production of croplands
and temperate grassland biomes (up to 50 and 70% of the total area, respectively) but the influence
varies depending on the characteristics of the studied region [6]. Nitrogen (N) deposition has been
highlighted as an important driver of primary production in N-limited ecosystems that also have an
impact on biodiversity in alpine grasslands. Stevens, et al. [9] have pointed out that N deposition
drives local grassland primary production better than the mean annual climatic variables and soil
conditions on a global scale. Similar results have been reported in a meta-analysis using 32 studies
of grasslands located in temperate regions and six in tropical areas [16]. Global model projections
revealed N deposition as the third driver with the most significant impact on biodiversity in alpine
areas, which also influence primary productivity [17,18]. Therefore, monitoring N deposition and
climatic variables in alpine grasslands could contribute to explaining how these variables drive GPP in
areas with complex topography and high species richness.

In Switzerland, alpine meadows and pastures cover 12% of the total territory (5139 km2 out
of 42,285 km2) and grasslands occupy ca. 71% of the remaining utilized agricultural area [19,20].
The results of experimental studies in (sub-) alpine areas (1500–3000 m a.sl.) highlight N deposition,
temperature, grazing, presence of rocks and stones, and shallow soils as the most limiting factors of
biomass production and C storage [21–23]. However, in these remote areas, studies on large-scale
interactions among N deposition, climatic factors, and GPP are lacking. On one hand, coarse spatial
resolution datasets are widely used for calibration and validation of Earth system models. On the
other hand, the role of N deposition in C uptake is still considered unclear, underestimated, or
underexplored [24–27]. Therefore, analyzing whether observed local interactions between climatic
factors, N deposition, and GPP remain true at a large scale is relevant to fostering the use of N
deposition datasets in modelling approaches.

Available N deposition maps for Switzerland brought along the opportunity to study its impact on
GPP response at a national scale for the first time. Remotely sensed GPP datasets are also available to
study C dynamics of land cover at global and regional scales [28]. While previous versions of MODIS
GPP products have shown underestimated and overestimated trends at high and low production sites,
respectively [29,30], different validation efforts and following improvements in the algorithms have
enhanced the reliability of remotely sensed GPP products for multiple applications [31–33]. As a result,
these products are suitable to study the production of land vegetated areas [34]. The objectives of this
study are (i) to analyze the impact of N deposition and climatic variables (precipitation, sunshine,
and temperature) on C fixation response in alpine grasslands, and (ii) to compare the results obtained
in alpine grasslands with those from other land cover classes with different management practices.
We stratified the analysis according to the MODIS land cover product (MCD12Q1) i.e., grasslands,
croplands, and croplands/natural vegetation mosaic [35] and used multiple linear regressions, which
have been often selected to analyze the relationship between GPP and covariates [36–38]. In addition,
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we analyzed the soil characteristics, such as aptitude for croplands, stone content, and water and
nutrient storage capacity for each class to interpret the results.

2. Materials and Methods

2.1. Study Area

Switzerland is divided into biogeographic regions according to flora and fauna patterns [39],
(Figure 1). The Midlands are intensively managed with agricultural land use, covering ca. 50% of
the area [40]. This is a heterogeneous floristic region with an altitudinal range between 256 m and
960 m a.s.l. [41]. The land cover class croplands mainly cover the Midlands (Figure 1). The altitudinal
gradient impacts climatic patterns and management practices. High intensity of use occurs at altitudes
lower than 1000 m a.s.l., and extensive management practices are frequent above this elevation [42,43].
In the Alps, pastures co-exist with extensively managed meadows with low yields and high plant
species diversity [44,45]. The land cover class grasslands are mostly located in this area (Figure 1).
Silvopastoral systems (mosaic of open grasslands, closed forest, and woody pastures) are characteristic
of the Jura mountains, with diverse management practices adapted to local conditions, such as cattle
stocking and logging [46–48]. The land cover class croplands/natural vegetation mosaic mostly covers
this region (Figure 1).
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regions. Coordinate system: WGS84.

The Alps divide the country producing cooler temperatures in the North than in the South,
which is influenced by the Mediterranean Sea. The Atlantic Ocean also influences the Swiss climate,
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producing an average precipitation of ca. 2000 mm/year in the Alps and 1000–1500 mm/year in the
lowlands. Altitude influences temperature, which ranges from 1 ◦C in winter to 17 ◦C in summer at
low altitudes (<1000 m a.s.l.); from −5 ◦C in winter to 11 ◦C in summer at 1500 m a.s.l.; and annual
means of −7.5 ◦C at altitudes above 3000 m a.s.l. [49]. The Midlands receive more relative sunshine
than the Alps and the Jura [50].

2.2. Data

2.2.1. MODIS Datasets

MODIS GPP datasets were available from the year 2000 to present (data: http://files.ntsg.umt.edu/

data/NTSG_Products/). Total annual values per pixel of 8-day GPP composite products (MOD17A2
version 5.5) for the years 2000, 2007, and 2010 were used in this study [51]. These years were selected
to allow a comparison with the available N deposition datasets at the time of the study. Flagged data
were filtered out.

The MOD17A2 algorithm estimates GPP based on a radiation conversion efficiency approach
with attenuation scalars for low temperature and water stress across biomes, using the MODIS land
cover product (MOD12) (1). These parameters are specific for each biome and are available through
a biome-property-look-up-table [52]. Scalars are estimated from coarse spatial resolution climate
datasets. While the use of daily climate data at higher spatial resolutions can improve the quantification
of GPP [53], MODIS products are still useful for characterizing how climate influences annual GPP
response at regional scales [54,55]. We considered MODIS GPP as a good compromise between
observational data available at a spatial resolution of 1km and data quality:

GPP = εmax ∗ TMINscalar ∗VPDscalar ∗ SWRad ∗ 0.45 ∗ FPAR (1)

where εmax is the maximum light use efficiency (kg C MJ−1), TMINscalar and VPDscalar are scalars
between 0 and 1 that attenuate light use efficiency values based on daily minimum temperature, the
vapour pressure deficit, SWrad * 0.45, corresponds to the amount of incident shortwave radiation for
photosynthesis, and is the fraction of absorbed photosynthetic active radiation (PAR).

The land cover classes used in this study were obtained from the MODIS product MCD12Q1 [35],
which is also used as an input to the algorithm that retrieves GPP. Therefore, we stratified the
analysis, according to MODIS land cover classes, for consistency. We selected: Grasslands, croplands,
and croplands/natural vegetation mosaic. The land cover classes croplands and croplands/natural
vegetation mosaic are mostly found in the Midlands (or Swiss Plateau) and the Jura mountains, and
the class grasslands is mainly located in the Alps. According to the Digital Height Model [56], the
land cover classes selected can be found from a minimum altitude of ca. 200 m to a maximum altitude
of 2634 m a.s.l. in croplands, 3033 m a.s.l. in croplands/natural vegetation mosaic, and 3570 m a.s.l.
in grasslands.

The GPP algorithm is based on the UMD classification scheme proposed by the University of
Maryland (UMD). However, we used the International Geosphere and Biosphere Programme (IGBP)
legend, in which the UMD class croplands is divided in two classes: Croplands and croplands/natural
vegetation mosaic. Friedl, et al. [35] reported an overall accuracy of 74.8% for the MCD12Q1 product
using the IGBP legend with 16 classes. The classes 10, 12, and 14 were selected i.e., grasslands,
croplands, and croplands/natural vegetation mosaic, respectively. All datasets were used at a spatial
resolution of 1 km.

2.2.2. N Deposition Datasets

N deposition raster data for the years 2000, 2007, and 2010 [57] were produced with a spatial
resolution of 1 km (Appendix A, Figure A1). The N deposition model assimilates land use information
from the Swiss Land-Use Statistics point grid, which provides information based on the visual
interpretation of aerial photographs at 0.1 km spatial resolution [58]. In order to provide the reader

http://files.ntsg.umt.edu/data/NTSG_Products/
http://files.ntsg.umt.edu/data/NTSG_Products/
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with some background about the Swiss Land-Use Statistics, we include here some details about how the
selected MODIS classes relate to this dataset. The Swiss Land-Use Statistics classes considered in the
model are arable land (class 221, nomenclature NOLU04), semi-natural grasslands (class 222), alpine
meadows (class 241), and alpine pastures (class 242). The class arable land overlapped the MODIS
classes croplands by 40.6%, the croplands/natural vegetation mosaic by 35.4%, and the grasslands by
1.35%. The class semi-natural grasslands overlapped the MODIS classes croplands/natural vegetation
mosaic by 43.3%, the croplands by 11.7%, and the grasslands by 8.8%. The class alpine meadows
overlapped the MODIS classes grasslands by 27.2%, the croplands/natural vegetation mosaic by
12.5%, and the croplands by 9.84%. Finally, the class alpine pastures overlapped the MODIS classes
grasslands by 39.9%, the croplands/natural vegetation mosaic by 9.7%, and the croplands by 5.1%.
Therefore, arable land and semi-natural grasslands are mostly covered by the MCD12Q1 classes
croplands and croplands/natural vegetation mosaic, respectively, and alpine meadows and pastures are
mainly covered by the MCD12Q1 class grasslands. In order to avoid possible mismatches between dry
deposition and MODIS land cover classes, specific N deposition maps, including only low vegetation
(excluding forests), were produced.

N deposition maps have been retrieved following a modelling approach based on wet and dry
deposition of nitrate and ammonium, as well as gaseous deposition of NH3, nitrogen dioxide (NO2),
and nitric acid. Atmospheric N deposition was mapped using a pragmatic approach that combines
emission inventories, statistical dispersion models, monitoring data, spatial interpolation methods,
and inferential deposition models [59]. Concentrations of the primary gaseous pollutants (NH3 and
NO2) are estimated by means of emission maps and statistical dispersion models with a resolution of
100 × 100 m2. As a result, the high spatial variability of these pollutants near emission sources can be
reflected in the models. The concentrations of secondary pollutants (aerosols, HNO3), as well as the
concentrations of N in precipitation, are derived from field monitoring data by applying geo-statistical
interpolation methods. Combustion processes and agricultural activities are the main sources of these
atmospheric components. In particular, agricultural management practices account for 92% of ammonia
(NH3) emissions, livestock being the main contributing source. Application and storage of manure
(38% and 13.8%, respectively), housing (28.4%), and grazing (2.2%) add up to 82.4% [59]. Therefore,
fertilization practices influence NH3 concentrations directly. Modelled ammonia concentrations were
validated with measured concentrations from 48 monitoring sites, R2 = 0.526 (Root Mean Square Error,
RMSE = 43%) [59]. Furthermore, the authors of a recent study concluded that N deposition maps
provide reliable estimates for large areas [60]. (Data: https://www.bafu.admin.ch/bafu/en/home/topics/
air/state/data/historical-data/maps-of-annual-values/map-of-nitrogen-deposition.html).

2.2.3. Weather Datasets

We used gridded datasets of mean annual values of temperature, yearly-accumulated precipitation,
and yearly relative sunshine duration (the ratio between the effective sunshine duration and the
maximal possible sunshine duration) for the years 2000, 2007, and 2010 (further information regarding
the spatial variability of these datasets can be found in the Appendix A: Figure A2, Figure A3, and
Figure A4) with a spatial resolution of 2.3 km [61].

Weather datasets were resampled to 1 km, allowing comparison with the other datasets. Mean
annual temperature reveals standard errors of 0.5◦ for the Swiss Plateau/Jura and 0.7◦ for the
Alps [62]. Cross-validation of annual precipitation datasets reports +/–20% for the Jura and the
Swiss Plateau and +/−25–30% for the Alps [63]. Sunshine datasets reached median absolute
values of less than 5% for the autumn/winter months and 3% for the summer months [64].
(Data: http://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-
maps.html?query=Grid-Data+products).

https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/historical-data/maps-of-annual-values/map-of-nitrogen-deposition.html
https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/historical-data/maps-of-annual-values/map-of-nitrogen-deposition.html
http://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-maps.html?query=Grid-Data+products
http://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-maps.html?query=Grid-Data+products
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2.3. GPP Response to Limiting Factors Per Land Cover Class: Statistical Analysis

Multiple linear regression models were built for the years 2000, 2007, and 2010, according to
the spatial extension of grasslands, croplands, and croplands/natural vegetation mosaic. A sample
with unique values was selected in order to avoid potential oversampling caused by downscaling
weather datasets to 1 km spatial resolution (see Section 2.2.3). The number of samples per land cover
class was between 2066 and 3370 (Table 1). Cook’s distance [65] (4/n, n: Number of samples) helped
exclude outliers and values producing leverage. GPP was the dependent variable and precipitation;
temperature, sunshine, and N deposition were the independent variables for all the years. Linearity
between dependent and independent variables was checked for each land cover class and year using
descriptive statistics (e.g., correlation matrices Figures A5 and A7) and scatterplots of the standardized
residuals and standardized predicted values (Figures A6 and A8). Natural logarithms were applied to
the independent variable in case of non-linearity with the dependent variable (e.g., N deposition with
GPP). Including a transformed version of the predictor allows incorporate non-linear associations into
the linear model [66].

Table 1. Number of samples (n) of all the variables (gross primary production (GPP), Nitrogen (N)
deposition, temperature, precipitation, and sunshine). Class 10: Grasslands, Class 12: Croplands, and
Class 14: Croplands/natural vegetation mosaic.

Year 2000 2007 2010

Class 10 12 14 10 12 14 10 12 14
n 2988 2066 3327 2978 2074 3370 2965 2074 3346

The final set of explanatory variables selected by the model differed per land cover class and
year, according to the following procedure: The model (forward stepwise) selected the order of entry
of each variable, according to the correlation between the independent variable and the dependent
variable. The independent variable with the highest correlation with the dependent variable was
entered into the model first. The rest of the explanatory variables were then entered into the model
automatically, according to their correlation with GPP and as long as the default tolerance threshold
(0.0001) of collinearity between the explanatory variable was already in the model and the new entered
one was not exceeded. Collinearity statistics were estimated to check the suitability of the final set
of variables selected by the model. Collinearity represents a serious issue when tolerance (T = 1 −
R2) drops below 0.1 or variance inflation factor (VIF = 1/T) is above 10 [67,68]. The probability of the
model to select an explanatory variable was also defined by entry criteria with a threshold of p < 0.05
and removal criteria with a threshold of p > 0.1.

Independence of residuals was analyzed with the Durbin–Watson (D–W) test. The D–W ranges
from 0 to 4, with values equaling 2, indicating no correlation. Normal distribution of the standardized
residuals was checked with P-P (probability-probability) plots and histograms (data not shown).
Homoscedasticity was analyzed with two tests, namely Breuch–Pagan (B–P) and Koenker (K). The
latter was used in case of non-normal distribution of standardized residuals. In case the assumption
of homoscedasticity was violated (e.g., see Figure A8 with an inverse butterfly heteroscedasticity),
heteroscedasticity-consistent (HC) standard errors were estimated [65]. The HC4 estimator was used
for all the cases because of high performance in case of high leverage or non-normal distributed
errors [69]. Finally, we estimated the shrunken (SR) R2 with a leave-one-out cross-validation approach
for statistical inference from our regression models to the population data of the studied land cover
classes in Switzerland [65]. These analyses were carried out using a macro developed for SPSS® [65,69].

2.4. Soil Characterstics Per Land Cover Class

The digital soil suitability map for Switzerland was generated in the 1970s at a scale of 1:200’000,
using spatial information regarding geology, elevation, terrain attributes, and climatic zones. This map
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helped interpret our results and characterize the selected land cover classes in terms of soil aptitude
for croplands, stone content, and water and nutrient storage capacity (Table 2) [70]. The soil suitability
map was converted to a raster layer with a spatial resolution of 1 km. This raster layer was used to
estimate the zonal statistics (minority and majority values). The value of the polygon that overlapped
the center of the raster cell was used to assign the value to the cell. These analyses were carried out in
ArcGIS 10.4.1®.

Table 2. Classes selected of the soil suitability map divided in levels.

Class Aptitude for
Croplands StoneContent Water Storage

Capacity
Nutrient Storage

Capacity

1 Very good Not stony Extremely low Extremely low
2 Good Slightly stony Very low Very low
3 Medium Stony Low Low
4 Limited Very stony Medium Medium
5 Inappropriate Extremely stony Good Good
6 Unknown Very good Very good
7 Unknown Unknown

3. Results

3.1. GPP Response to Limiting Factors Per Land Cover Class: Statistical Analysis

The highest correlations were found between GPP and N deposition and between GPP and
temperature. The lowest correlations were found between GPP and precipitation. In particular, very
low correlation or no correlation between both variables were found in 2007 and 2010 for grasslands
(≈0.06 and ≈–0.04, respectively, p < 0.01) and croplands/natural vegetation mosaic (≈0.07 p < 0.01 and
–0.04 p < 0.05) (Figure 2 and Appendix A, Tables A1–A3).
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In grasslands, the two variables that mostly explained the GPP variance were N deposition and
precipitation (Table 3). In croplands, N deposition was the independent variable that influenced the
most GPP response. Precipitation followed N deposition in relevance for the years 2000 and 2010.
In 2007, temperature was, however, the variable that followed N deposition in importance and the
remaining variables were excluded from the model (Table 3). In croplands/natural vegetation mosaics,
N deposition largely explained the GPP response followed by precipitation in the years 2000 and 2007
and sunshine in 2010 (Table 3).

Table 3. Coefficient of determination (R2) change per variable (alphabetically ordered) that the stepwise
regression model selected for grasslands, croplands, and croplands/natural vegetation mosaics. Excl:
Excluded. Natural logarithms of N deposition used for grasslands in all the years and for croplands
in 2000.

Grasslands Croplands Croplands/Natural
Vegetation Mosaics

2000 2007 2010 2000 2007 2010 2000 2007 2010

N deposition 67.7% 63.7% 66.0% 44.1% 37.9% 34.6% 16.9% 14.1% 14.2%
Precipitation 8.1% 9.5% 13.6% 2.7% Excl. 5.0% 2.1% 1.4% 1.0%

Sunshine 0.5% 0.1% 0.3% 0.2% Excl. 0.7% Excl. 0.3% 2.9%
Temperature 0.2% 1.4% 0.2% Excl. 2.4% 0.6% Excl. 0.5% Excl.

In grasslands, Pearson’s correlations [65] showed that N deposition and temperature were the
variables with the highest correlation with GPP (Figure 2 and Appendix A, Table A1). The model with
the lowest RMSE (including all explanatory variables) reached collinearity values of 0.23 for T and
4.5 for VIF. The addition of variables to the ones already in the model (e.g., model 1: N deposition,
model 2: N deposition and precipitation) increased the coefficient of determination (R2) up to 0.77
in 2000, 0.75 in 2007, and 0.8 in 2010 (Table 4). In croplands, N deposition and temperature were the
most correlated independent variables with GPP in all the years (Figure 2 and Appendix A, Table A2).
However, correlation between these variables resulted either in exclusion of the one less correlated
with GPP or a later addition into the model. The final model achieved collinearity statistics between
0.49 and 0.88 for T and between 1.14 and 2.06 for VIF. The explanatory variables reached adjusted R2

values ca. 0.4 (Table 5). In croplands/natural vegetation mosaics, the explanatory variables that reached
high correlation with GPP were N deposition followed by positive correlations with temperature and
negative correlations with sunshine (Figure 2 and Appendix A, Table A3). The model with the lowest
RMSE achieved values between 0.61 and 0.99 for T and 1 and 1.6 for VIF. Adjusted R2 values reached
ca. 0.18 in 2000 and 2010, and 0.16 in 2007 (Table 6).

Table 4. Order of variables entered into the model and adjusted R2 for grasslands, according to
the addition of a new variable to the model: Ln N dep: Natural logarithm of N deposition, Temp:
Temperature, Precip: Precipitation, and Sunsh: Sunshine. *** Statistically significant p < 0.001.

2000 2007 2010

Order Adjusted
R2 RMSE Order Adjusted

R2 RMSE Order Adjusted
R2 RMSE

Ln N dep 0.677 *** 0.225 Ln N dep 0.637 *** 0.246 Ln N dep 0.660 *** 0.220
Precip 0.759 *** 0.194 Precip 0.731 *** 0.212 Precip 0.796 *** 0.171
Sunsh 0.764 *** 0.192 Temp 0.746 *** 0.206 Temp 0.798 *** 0.170
Temp 0.766 *** 0.191 Sunsh 0.747 *** 0.206 Sunsh 0.800 *** 0.169
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Table 5. Order of variables entered into the model and adjusted R2 for croplands, according to the
addition of a new variable to the model: N dep: N deposition, Ln N dep: Natural logarithm of N
deposition, Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine. Excl: Variable excluded
from the model. ** Statistically significant p < 0.01. *** Statistically significant p < 0.001.

2000 2007 2010

Order Adjusted
R2 RMSE Order Adjusted

R2 RMSE Order Adjusted
R2 RMSE

Ln N dep 0.441 *** 0.194 N dep 0.378 *** 0.212 N dep 0.346 *** 0.211
Precip 0.468 *** 0.190 Temp 0.402 *** 0.207 Precip 0.395 *** 0.203
Sunsh 0.470 ** 0.189 Precip Excl Sunsh 0.402 *** 0.202
Temp Excl Sunsh Excl Temp 0.408 *** 0.201

Table 6. Order of variables entered into the model and adjusted R2 for croplands/natural vegetation
mosaics according to the addition of a new variable to the model: N deposition: N dep, Temp:
Temperature, Precip: Precipitation, and Sunsh: Sunshine. Excl: Variable excluded from the model. ***
Statistically significant p < 0.001.

2000 2007 2010

Order Adjusted
R2 RMSE Order Adjusted

R2 RMSE Order Adjusted
R2 RMSE

N dep 0.169 *** 0.228 N dep 0.141 *** 0.247 N dep 0.142 *** 0.238
Precip 0.189 *** 0.225 Temp 0.146 *** 0.246 Sunsh 0.171 *** 0.234
Sunsh Excl Precip 0.160 *** 0.244 Precip 0.181 *** 0.232
Temp Excl Sunsh 0.163 *** 0.243 Temp Excl

In grasslands, standardized residuals were normally distributed in all the cases. D–W values from
1.9 to 2 indicated independence of residuals, and the B–P test showed residuals with heteroscedasticity
that were statistically significant. The leave-one-out cross-validation resulted in SR R2 values ca. 0.9
for all the years. The regression coefficients to build the model for statistical inference are shown in
Table 7. In croplands, standardized residuals were normally distributed for all the datasets. D–W
values were ca. 1.9, revealing independence of errors. The B–P test showed heteroscedasticity that was
statistically significant. The leave-one-out cross-validation resulted in SR R2 values ca. 0.6 for all the
years. The regression coefficients to create the model for statistical inference are shown in Table 8. In
croplands/natural vegetation mosaics, standardized residuals were not normally distributed in all the
samples. D–W values ca. 1.8 showed independence of errors. The K test indicated heteroscedasticity
that was statistically significant. The leave-one-out cross-validation resulted in SR R2 values ca. 0.4 for
all the years. The regression coefficients to generate the model for statistical inference are shown in
Table 9.
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Table 7. Regression coefficients with heteroscedasticity-consistent standard errors for grasslands. Const: Constant, Ln N dep: Natural logarithm of N deposition,
Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine. *** Statistically significant p < 0.001.

2000 2007 2010

Coefficients 95% CI Coefficients 95% CI Coefficients 95% CI

Const −0.8075 *** ± 0.0704 −0.9456 – −0.6695 0.1089 ± 0.0971 −0.0815 – 0.2994 0.0783 – 0.0587 −0.0367 − 0.1934
Ln N dep 0.6270 *** ± 0.0121 0.6033 − 0.6507 0.5469 *** ± 0.0136 0.5201 − 0.5736 0.6095 *** ± 0.0119 0.5862 − 0.6329

Precip −0.0002 *** ± 0.0000 — −0.0003 *** ±0.0000 — −0.0003 *** ± 0.0000 —
Sunsh 0.0075 *** ± 0.0013 0.0051 − 0.0100 −0.0057 *** ± 0.0016 −0.0088 – −0.0026 −0.0066 *** ± 0.0010 −0.0086 – −0.0047
Temp 0.0103 *** ± 0.0018 0.0068 - 0.0139 0.0279 *** ± 0.0020 0.0240 – 0.0319 0.0123 *** ± 0.0016 0.0091 – 0.0155

Table 8. Regression coefficients with heteroscedasticity-consistent standard errors for croplands. Const: Constant, N dep: N deposition (natural logarithm of N
deposition only used in 2000), Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine. ** Statistically significant p < 0.01. *** Statistically significant p < 0.001.

2000 2007 2010

Coefficients 95% CI Coefficients 95% CI Coefficients 95% CI

Const −0.1581 ± 0.0783 −0.3116– −0.0046 0.5791 *** ± 0.0123 0.5549 – 0.6033 1.018 *** ± 0.0540 0.9123 – 1.124
N dep 0.4115 *** ± 0.0114 0.3891 – 0.4338 0.0197 *** ± 0.0008 0.0181 – 0.0212 0.0185 *** ± 0.0009 0.0168 – 0.0203
Precip −0.0001 *** ± 0.0000 — — — −0.0001 *** ± 0.0000 —
Sunsh 0.004** ± 0.0012 0.0017 – 0.0064 — — −0.0062 *** ± 0.0011 −0.0083 – -0.0042
Temp — — 0.0192 *** ± 0.0017 0.0158 - 0.0226 0.0104 *** ± 0.0017 0.0070 – 0.0138

Table 9. Regression coefficients with heteroscedasticity-consistent standard errors for croplands/natural vegetation mosaic. Const: Constant, N dep: N deposition,
Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine. *** Statistically significant p < 0.001.

2000 2007 2010

Coefficients 95% CI Coefficients 95% CI Coefficients 95% CI

Const 1.077 *** ± 0.0175 1.042 – 1.111 0.9787 *** ± 0.0643 0.8527 – 1.1048 1.568 *** ± 0.0478 1.475 – 1.662
N dep 0.0167 *** ± 0.0006 0.0154 – 0.0179 0.0123 *** ± 0.0008 0.0107 – 0.0138 0.0138 *** ± 0.0007 0.0123 – 0.0152
Precip −0.0001 *** ± 0.0000 — 0.0001 *** ± 0.0000 — −0.0001 *** ± 0.0000 —
Sunsh — — −0.0041 *** ± 0.0010 −0.0061 – −0.0021 −0.0120 *** ± 0.0010 −0.0139 – −0.0101
Temp — — 0.0205 *** ± 0.0022 0.0161 – 0.0248 — —



www.manaraa.com

Remote Sens. 2019, 11, 1135 11 of 24

3.2. Soil Characteristics Per Land Cover Class

The zonal-statistics analysis using the digital soil suitability map characterized the aptitude for
croplands, stone content, and water and nutrient storage capacity of the three land cover classes. The
results indicated that the land cover class grasslands were mostly located in areas inappropriate for
agriculture. The majority of the values of this land cover class, with regard to stone content and water
and nutrient storage capacity, resulted in the category unknown. However, the visual inspection of the
digital soil suitability map for Switzerland [70] reveals that the Alps are characterized by extremely
low, very low, and low water and nutrient storage capacity values. Croplands were mainly placed in
areas with very good aptitude for agriculture production, slightly stony, and with good water and
nutrient storage capacity. Croplands/natural vegetation mosaic were mostly characteristic of stony
areas inappropriate for agriculture, with good water and nutrient storage capacity.

4. Discussion

GPP Response to Limiting Factors Per Land Cover Class: Statistical Analysis

N deposition achieved a higher predictive power of GPP response than climatic factors, especially
in alpine grasslands. However, the observed non-linear relationships between N deposition and GPP
in grasslands for all the years suggest plant N saturation even at the observed low N deposition rates.
Grasslands are more sensitive to plant N saturation than other ecosystems, which produces non-linear
primary productivity responses at lower N saturation thresholds [71]. Non-linear responses change
according to climate factors and soil conditions [72].

The correlations between climatic factors and GPP shown in our study are in line with the
modelling results of Beer, et al. [6] for Switzerland. In particular, we found a low correlation between
precipitation and GPP. Nevertheless, this climatic factor was relevant to generate the models. Therefore,
analyzing the correlation results was key to determining the role of this variable in the considered years
(Figure 2 and Appendix A, Tables A1–A3). We also found a positive correlation between N deposition
and temperature—such a correlation was also reported by Maskell, et al. [73]. Notwithstanding
temperature was a relevant factor to explain GPP variance in the years 2000, 2007, and 2010, a higher
correlation between N deposition and GPP as well as the collinearity threshold produced that N
deposition overshadowed the role of temperature in the models. Therefore, studying how limiting
factors of GPP interact among them is key before drawing conclusions from statistical models. Moreover,
the comparison of results among years shows how the magnitude of influence of those limiting factors
can vary. We also reported negative correlations between sunshine and GPP. Beer, et al. [6] suggested
that this negative correlation occurs because sun radiation may induce evapotranspiration, which
affects water availability and limit GPP. Besides, productivity may increase with diffuse sun radiation
produced by the complex topography and cloudy conditions. Baptist and Choler [74] also observed
this relationship, comparing the impact of overcast and cloudless conditions on C assimilation in alpine
meadows. On the other hand, growth cycles constrained by altitudinal gradients may result in lower
seasonal GPP values [74]. Nevertheless, Zeeman, et al. [75] concluded that accounting for the growing
season length and management period do not improve GPP estimations in grasslands managed at
different elevations in Switzerland. The MODIS land cover classes considered in our study spread
across a wide altitudinal range in which different growing seasons occur within the same land cover
class (see Section 2.2.1). Therefore, we consider the use of annual values appropriated to carry out our
analysis. In particular, grasslands have a standard growing season from February to November [76].

The predictive performance of N deposition decreased in croplands and croplands/natural
vegetation mosaics. Legume-based crops (grassland in rotation) that reach high rates of N inputs
through N2 fixation can maintain a moderate-high level of productivity in the long-term [77]. Moreover,
areas with high intensity of use have additional input of nutrients, and therefore modelled N deposition
may play a less relevant role to predict GPP response. In addition, the class croplands/natural vegetation
mosaic is widely located in the Jura mountains, which is characterized by various management practices.
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In particular, extensification processes that decrease biodiversity of woody pastures have occurred on
remote areas of the Jura mountains, while high intensity of use practices have contributed to preserving
biodiversity on the proximity of populated zones [47,78]. Therefore, the low influence of N deposition
in GPP response could be explained by complex biosphere-atmosphere interactions triggered by mixed
management practices and high species richness [79–81]. In particular, Bassin, et al. [23] showed that
N deposition could enhance, diminish, or not affect the productivity of certain species in abundant
plant communities. Abiotic and biotic factors mediate N deposition effects in terrestrial ecosystems,
producing different impacts among biomes [82]. Consequently, different results are expected in areas
with different management practices and water and nutrient storage capacity.

5. Outlook

High N input through animal manure, mineral fertilizer, and N deposition are common in
croplands and can produce nutrient leaching and eutrophication of surface waters [83–85]. In
Switzerland, N deposition is the source that provides the least amount of N inputs in agricultural
soils [19]. However, critical loads (threshold below which adverse environmental effects do not
occur according to present knowledge) of N deposition have been exceeded in most of the forest and
semi-natural ecosystems [59]. Despite N deposition decreasing since the mid-1990s, N deposition
remains still too high in many areas [60]. In particular, the highest N exceedances occur in the lowlands
where intensive management practices lead to high ammonia emissions because of high manure
inputs [59,86]. In our study, the predictive performance of N deposition decreased in those areas with
high intensity of use. N can stimulate growth differently according to species-specific physiology and
other co-limiting nutrients, such as phosphorous and potassium [23,87]. However, in those cultivated
areas, growth is regulated by specific management practices. Detailed information about management
practices (e.g., fertilization and irrigation), soil components, and crop types could shed light on the
impact of N deposition on C fixation response in managed areas. Therefore, we recommend further
research in that field. Determining nutrient balance helps characterize N dynamics and the influence
of nutrient sources in managed agroecosystems [88,89].

On the other hand, N can be a driver, not only of biomass but also of ecosystem respiration in
grasslands and croplands, which can turn C sinks into sources [10,90,91]. In addition, controlling
factors of GPP response can have opposite effects. For example, low quantities of N deposition promote
C storage while high temperatures produce C losses [24,92]. Taking into account these interactions is
of utter importance because of ever more frequent extreme climatic episodes worldwide. Therefore,
quantifying the impact of N deposition on the C budget together with other factors, such as land
management practices and extreme climatic events, is crucial to understanding ecosystem processes.
The emission-based model adopted in this study to quantify N deposition provided good estimates for
large areas and produced similar results when compared with alternative methods [60]. Therefore,
this approach is considered a reliable source of information for studies carried out at a national scale.
In addition, we suggest the development of further lines of research, taking into account the climate
inter-annual variability in the study areas, which could provide answers to the low correlation found
between precipitation and GPP. Model simulations have shown the importance of coupling N and C
cycles to account for vegetation dynamics and to improve global patterns of C and N fluxes [93,94].
There are still limitations on modelling sources of fixed N and land management changes, as well as
coupling terrestrial C and N cycles [95,96]. Nevertheless, we expect our study to contribute to the
inclusion of N deposition datasets in Earth system models to better account for N dynamics. This
could improve predictions of C uptake in different ecosystems [97–99].

6. Conclusions

Our study emphasizes the importance of studying how limiting factors of GPP response relate
among them and to GPP to derive conclusions about their explanatory performance. We showed the
role of N deposition in explaining GPP variance in soils with low nutrient storage capacity and how



www.manaraa.com

Remote Sens. 2019, 11, 1135 13 of 24

these areas present plant N saturation. The most important climatic variable to build all the models
was precipitation. Temperature and sunshine were occasionally relevant in specific years. However,
temperature was the variable with the second highest correlation with GPP. Therefore, interactions
among controlling factors need to be taken into account before drawing conclusions from the final set
of explanatory variables selected by a model.

This study contributes to characterizing large spatial patterns of GPP in Switzerland and how
controlling factors vary in areas with complex topography affected by local climatic conditions and
different land management patterns. However, we recommend developing further research lines to
disentangle the impact of controlling factors on GPP variance in ecosystems with high intensity of
use, mixed management practices, and high species richness as well as the role of precipitation in
GPP response in the study area. Finally, we foster accounting for N dynamics and land management
practices in conjunction with climatic factors in C budget models to improve our understanding of
complex ecosystem processes.
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Table A1. Pearson’s correlation between GPP: Gross primary productivity and Ln N dep: Natural logarithm of N deposition, Temp: Temperature, Precip: Precipitation,
and Sunsh: Sunshine, based on a bootstrap of 1000 samples per land cover class and year. ** Statistically significant p < 0.01.

Grasslands

GPP 2000 GPP 2007 GPP 2010

Pearson Correlation 95% CI Pearson Correlation 95% CI Pearson Correlation 95% CI

Ln N dep 0.823 ** ± 0.006 0.811— 0.833 0.798 ** ± 0.006 0.786 — 0.811 0.813 ** ± 0.006 0.801 — 0.824
Temp 0.741 ** ± 0.008 0.724 — 0.756 0.749 ** ± 0.008 0.734 — 0.763 0.748 ** ± 0.008 0.733 — 0.763
Precip −0.220 ** ± 0.016 −0.250 — −0.190 0.059 ** ± 0.017 0.026 — 0.092 −0.035 ** ± 0.017 −0.069 — −0.001
Sunsh −0.121 ** ± 0.019 −0.158 — −0.086 −0.233 ** ± 0.018 −0.270 — −0.197 −0.291 ** ± 0.018 −0.325 — −0.256

Table A2. Pearson’s correlation between GPP: Gross primary productivity and N dep: N deposition (natural logarithm used only for the year 2000), Temp: Temperature,
Precip: Precipitation, and Sunsh: Sunshine, based on a bootstrap of 1000 samples per land cover class and year. ** Statistically significant p < 0.01.

Croplands

GPP 2000 GPP 2007 GPP 2010

Pearson Correlation 95% CI Pearson Correlation 95% CI Pearson Correlation 95% CI

N dep 0.664 ** ± 0.011 0.643 — 0.687 0.615 ** ± 0.013 0.590 — 0.640 0.588 ** ± 0.013 0.560 — 0.616
Temp 0.527 ** ± 0.015 0.499 — 0.554 0.487 ** ± 0.016 0.455 — 0.518 0.477 ** ± 0.016 0.445 — 0.508
Precip −0.383 ** ± 0.018 −0.418 — −0.347 −0.164 ** ± 0.023 −0.208 — −0.115 −0.236 ** ± 0.021 −0.276 — −0.195
Sunsh −0.243 ** ± 0.018 −0.278 — −0.207 −0.307 ** ± 0.019 −0.346 — −0.268 −0.387 ** ± 0.016 −0.419 — −0.357

Table A3. Pearson’s correlation between GPP: Gross primary productivity and N dep: N deposition, Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine,
based on a bootstrap of 1000 samples per land cover class and year. * Statistically significant p < 0.05 ** Statistically significant p < 0.01.

Croplands/Natural Vegetation Mosaic

GPP 2000 GPP 2007 GPP 2010

Pearson Correlation 95% CI Pearson Correlation 95% CI Pearson Correlation 95% CI

N dep 0.411 ** ± 0.013 0.384 — 0.438 0.375 ** ± 0.014 0.349 — 0.405 0.377 ** ± 0.014 0.349 — 0.405
Temp 0.245 ** ± 0.017 0.212 — 0.277 0.220 ** ± 0.017 0.187 — 0.253 0.192 ** ± 0.017 0.160 — 0.226
Precip −0.173 ** ± 0.016 −0.202 — −0.141 0.068 ** ± 0.016 0.037 — 0.100 −0.040 * ± 0.016 −0.074 — −0.008
Sunsh −0.215 ** ± 0.014 −0.244 — −0.186 −0.229 ** ± 0.015 −0.259 — −0.198 −0.320 ** ± 0.014 −0.348 — −0.293
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